A mixed norm variant of Wolff’s inequality for paraboloids
نویسندگان
چکیده
We adapt the proof for �(L) Wolff inequalities in the case of plate decompositions of paraboloids, to obtain stronger �2(Lp) versions. These are motivated by the study of Bergman projections for tube domains.
منابع مشابه
Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملWolff’s inequality for hypersurfaces
We extend Wolff’s “local smoothing” inequality [18] to a wider class of not necessarily conical hypersurfaces of codimension 1. This class includes surfaces with nonvanishing curvature, as well as certain surfaces with more than one flat direction. An immediate consequence is the Lp-boundedness of the corresponding Fourier multiplier operators. Mathematics Subject Classification: 42B08, 42B15. ...
متن کاملA NORM INEQUALITY FOR CHEBYSHEV CENTRES
In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...
متن کاملProjection Inequalities and Their Linear Preservers
This paper introduces an inequality on vectors in $mathbb{R}^n$ which compares vectors in $mathbb{R}^n$ based on the $p$-norm of their projections on $mathbb{R}^k$ ($kleq n$). For $p>0$, we say $x$ is $d$-projectionally less than or equal to $y$ with respect to $p$-norm if $sum_{i=1}^kvert x_ivert^p$ is less than or equal to $ sum_{i=1}^kvert y_ivert^p$, for every $dleq kleq n$. For...
متن کاملAn Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm
The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...
متن کامل